Research

Beware! Big Data Is Not Free of Discrimination Research
It's just data drawn from the real world - what could be immoral about that?

Beware! Big Data Is Not Free of Discrimination

August 13, 2015 3024

Globe of numbers

It’s just data drawn from the real world – what could be immoral about that?

“This program had absolutely nothing to do with race…but multi-variable equations.”

That’s what Brett Goldstein, a former policeman for the Chicago Police Department (CPD) and current Urban Science Fellow at the University of Chicago’s School for Public Policy, said about a predictive policing algorithm he deployed at the CPD in 2010. His algorithm tells police where to look for criminals based on where people have been arrested previously. It’s a “heat map” of Chicago, and the CPD claims it helps them allocate resources more effectively.

The Conversation logo

This article by Jeremy Kun originally appeared at The Conversation, a Social Science Space partner site, under the title “Big data algorithms can discriminate, and it’s not clear what to do about it”

Chicago police also recently collaborated with Miles Wernick, a professor of electrical engineering at Illinois Institute of Technology, to algorithmically generate a “heat list” of 400 individuals it claims have the highest chance of committing a violent crime. In response to criticism, Wernick said the algorithm does not use “any racial, neighborhood, or other such information” and that the approach is “unbiased” and “quantitative.” By deferring decisions to poorly understood algorithms, industry professionals effectively shed accountability for any negative effects of their code.

But do these algorithms discriminate, treating low-income and black neighborhoods and their inhabitants unfairly? It’s the kind of question many researchers are starting to ask as more and more industries use algorithms to make decisions. It’s true that an algorithm itself is quantitative – it boils down to a sequence of arithmetic steps for solving a problem. The danger is that these algorithms, which are trained on data produced by people, may reflect the biases in that data, perpetuating structural racism and negative biases about minority groups.

There are a lot of challenges to figuring out whether an algorithm embodies bias. First and foremost, many practitioners and “computer experts” still don’t publicly admit that algorithms can easily discriminate. More and more evidence supports that not only is this possible, but it’s happening already. The law is unclear on the legality of biased algorithms, and even algorithms researchers don’t precisely understand what it means for an algorithm to discriminate.

Being quantitative doesn’t protect against bias

Both Goldstein and Wernick claim their algorithms are fair by appealing to two things. First, the algorithms aren’t explicitly fed protected characteristics such as race or neighborhood as an attribute. Second, they say the algorithms aren’t biased because they’re “quantitative.” Their argument is an appeal to abstraction. Math isn’t human, and so the use of math can’t be immoral.

Sadly, Goldstein and Wernick are repeating a common misconception about data mining, and mathematics in general, when it’s applied to social problems. The entire purpose of data mining is to discover hidden correlations. So if race is disproportionately (but not explicitly) represented in the data fed to a data-mining algorithm, the algorithm can infer race and use race indirectly to make an ultimate decision.

Here’s a simple example of the way algorithms can result in a biased outcome based on what it learns from the people who use it. Look at how how Google search suggests finishing a query that starts with the phrase “transgenders are”:

Google autofill for 'transgenders are'

Taken from Google.com on August 10, 2015.

Autocomplete features are generally a tally. Count up all the searches you’ve seen and display the most common completions of a given partial query. While most algorithms might be neutral on the face, they’re designed to find trends in the data they’re fed. Carelessly trusting an algorithm allows dominant trends to cause harmful discrimination or at least have distasteful results.

Beyond biased data, such as Google autocompletes, there are other pitfalls, too. Moritz Hardt, a researcher at Google, describes what he calls the sample size disparity. The idea is as follows. If you want to predict, say, whether an individual will click on an ad, most algorithms optimize to reduce error based on the previous activity of users.

But if a small fraction of users consists of a racial minority that tends to behave in a different way from the majority, the algorithm may decide it’s better to be wrong for all the minority users and lump them in the “error” category in order to be more accurate on the majority. So an algorithm with 85% accuracy on US participants could err on the entire black sub-population and still seem very good.

Hardt continues to say it’s hard to determine why data points are erroneously classified. Algorithms rarely come equipped with an explanation for why they behave the way they do, and the easy (and dangerous) course of action is not to ask questions.

Extent of the problem

While researchers clearly understand the theoretical dangers of algorithmic discrimination, it’s difficult to cleanly measure the scope of the issue in practice. No company or public institution is willing to publicize its data and algorithms for fear of being labeled racist or sexist, or maybe worse, having a great algorithm stolen by a competitor.

Even when the Chicago Police Department was hit with a Freedom of Information Act request, they did not release their algorithms or heat list, claiming a credible threat to police officers and the people on the list. This makes it difficult for researchers to identify problems and potentially provide solutions.

Legal hurdles

Existing discrimination law in the United States isn’t helping. At best, it’s unclear on how it applies to algorithms; at worst, it’s a mess. Solon Barocas, a postdoc at Princeton, and Andrew Selbst, a law clerk for the Third Circuit US Court of Appeals, argued together that US hiring law fails to address claims about discriminatory algorithms in hiring.

The crux of the argument is called the “business necessity” defense, in which the employer argues that a practice that has a discriminatory effect is justified by being directly related to job performance. According to Barocas and Selbst, if a company algorithmically decides whom to hire, and that algorithm is blatantly racist but even mildly successful at predicting job performance, this would count as business necessity – and not as illegal discrimination. In other words, the law seems to support using biased algorithms.

What is fairness?
Maybe an even deeper problem is that nobody has agreed on what it means for an algorithm to be fair in the first place. Algorithms are mathematical objects, and mathematics is far more precise than law. We can’t hope to design fair algorithms without the ability to precisely demonstrate fairness mathematically. A good mathematical definition of fairness will model biased decision-making in any setting and for any subgroup, not just hiring bias or gender bias.

And fairness seems to have two conflicting aspects when applied to a population versus an individual. For example, say there’s a pool of applicants to fill 10 jobs, and an algorithm decides to hire candidates completely at random. From a population-wide perspective, this is as fair as possible: all races, genders and orientations are equally likely to be selected.

But from an individual level, it’s as unfair as possible, because an extremely talented individual is unlikely to be chosen despite their qualifications. On the other hand, hiring based only on qualifications reinforces hiring gaps. Nobody knows if these two concepts are inherently at odds, or whether there is a way to define fairness that reasonably captures both. Cynthia Dwork, a Distinguished Scientist at Microsoft Research, and her colleagues have been studying the relationship between the two, but even Dwork admits they have just scratched the surface.

Get companies and researchers on the same page

There are immense gaps on all sides of the algorithmic fairness issue. When a panel of experts at this year’s Workshop on Fairness, Accountability, and Transparency in Machine Learning was asked what the low-hanging fruit was, they struggled to find an answer. My opinion is that if we want the greatest progress for the least amount of work, then businesses should start sharing their data with researchers. Even with proposed “fair” algorithms starting to appear in the literature, without well-understood benchmarks we can’t hope to evaluate them fairly. The Conversation


Jeremy Kun is a theoretical computer scientist at the University of Illinois at Chicago with broad interests, including complexity theory, graph theory and network science, learning theory, cryptography, combinatorics and geometry. His research to date focuses on theoretical and applied graph theory.

View all posts by Jeremy Kun

Related Articles

Exploring the ‘Publish or Perish’ Mentality and its Impact on Research Paper Retractions
Research
October 10, 2024

Exploring the ‘Publish or Perish’ Mentality and its Impact on Research Paper Retractions

Read Now
Lee Miller: Ethics, photography and ethnography
News
September 30, 2024

Lee Miller: Ethics, photography and ethnography

Read Now
NSF Seeks Input on Research Ethics
Ethics
September 11, 2024

NSF Seeks Input on Research Ethics

Read Now
Megan Stevenson on Why Interventions in the Criminal Justice System Don’t Work
Social Science Bites
July 1, 2024

Megan Stevenson on Why Interventions in the Criminal Justice System Don’t Work

Read Now
How ‘Dad Jokes’ Help Children Learn How To Handle Embarrassment

How ‘Dad Jokes’ Help Children Learn How To Handle Embarrassment

Yes, dad jokes can be fun. They play an important role in how we interact with our kids. But dad jokes may also help prepare them to handle embarrassment later in life.

Read Now
How Social Science Can Hurt Those It Loves

How Social Science Can Hurt Those It Loves

David Canter rues the way psychologists and other social scientists too often emasculate important questions by forcing them into the straitjacket of limited scientific methods.

Read Now
Digital Scholarly Records are Facing New Risks

Digital Scholarly Records are Facing New Risks

Drawing on a study of Crossref DOI data, Martin Eve finds evidence to suggest that the current standard of digital preservation could fall worryingly short of ensuring persistent accurate record of scholarly works.

Read Now
0 0 votes
Article Rating
Subscribe
Notify of
guest

This site uses Akismet to reduce spam. Learn how your comment data is processed.

1 Comment
Newest
Oldest Most Voted
Inline Feedbacks
View all comments